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We study superconductivity in eg orbital systems on a square lattice by applying fluctuation exchange approximation. For 
such a multiorbital system, even-parity spin-triplet and odd-parity spin-singlet states are allowed by constructing a pair with 
antisymmetrical orbitals. Indeed, it has been found that such states appear in a two-orbital Hubbard model in which Fermi 
surfaces for both orbitals are the same. In the eg orbital model, the number of Fermi surfaces and their structures depend on 
the ratio of the Slater-Koster integrals, and exotic superconducting states peculiar to a multi-Fermi-surface system may 
occur. We find several superconducting states depending on the structure of the Fermi surfaces and the number of 
electrons per site. In particular, we find even-parity spin-triplet and odd-parity spin-singlet states with a finite total 
momentum like the Fulde-Ferrell-Larkin-Ovchinnikov state even without a magnetic field. Such an exotic pair can be 
stabilized with a finite total momentum, which connects the centers of Fermi surfaces with similar structures.  
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1. Introduction 
 
The role of orbital degree of freedom on magnetism 

has been studied. For example, importance of the orbital 
degree of freedom has been recognized for manganites [1, 
2] and for f-electron systems [2, 3]. Then, it is revealed 
that magnetism in multi-orbital systems has a rich variety. 
Recently, the roles of orbital degree of freedom on 
superconductivity have also been studied theoretically for 
several materials [4, 5, 6, 7, 8, 9, 10, 11], and it has been 
found that orbital degree of freedom is important for 
determination of pairing symmetry. 

To understand the effects of orbital degree of freedom 
on superconductivity for simple cases, two-orbital 
Hubbard models with the same dispersion for both orbitals 
have been studied by a mean-field theory [12], by a 
dynamical mean-field theory [13, 14], and by a fluctuation 
exchange (FLEX) approximation [15]. These studies have 
revealed that s-wave spin-triplet state and p-wave spin-
singlet state, which satisfy the Pauli principle by 
composing an orbital state of a pair antisymmetrically, can 
be stabilized in the two-orbital Hubbard model. 

The two-orbital Hubbard model describes a system 
where Fermi surfaces for both orbitals are the same. To 
discuss more realistic situations, we should improve the 
two-orbital Hubbard model. In particular, we should 
include effects of orbital symmetry, such as orbital 
dependent hopping integrals which describes a multi-
Fermi-surface system and transformation property of 
orbitals. These properties are important for magnetism in 
d-electron systems [1, 2] and in f-electron systems [2, 16, 
17], and should be important also for superconductivity. 

In this paper, we consider an eg orbital model on a 

square lattice in order to include such effects, and 
investigate possible superconducting states by applying 
FLEX approximation, which has been extended to multi-
orbital models [6, 7, 9, 10, 11, 15]. We find several 
superconducting states depending on model parameters. In 
particular, we find that pairing states with a finite total 
momentum like the Fulde-Ferrell-Larkin-Ovchinnikov 
(FFLO) state [18, 19] are possible in a system with multi-
Fermi-surface. 
 
 

2. Model 
 
To investigate superconductivity in a multi-orbital 

system, we consider a tight-binding model for eg orbitals 

given by  
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where ciτσ is the annihilation operator of the electron at 

site i with orbital τ (=1 or 2) and spin σ (=↑ or ↓), ckτσ is 

the Fourier transform of it, itsitsits ccn †= , and 
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niτ= ∑
σ

 niτσ. The coupling constants U, U', J, and J' 

denote the intra-orbital Coulomb, inter-orbital Coulomb, 
exchange, and pair-hopping interactions, respectively. In 

the followings, we use the relations U=U'+J+J' and J=J'

 [20]. 
We consider hopping integrals for nearest neighbor sites 
on a square lattice, and the coefficients of the kinetic 
energy terms in Eq. (1) are generally given by  
 

εk11= 
1
2[3(ddσ)+(ddδ)](coskx+cosky),    (2) 

εk22= 
1
2[(ddσ)+3(ddδ)](coskx+cosky),   (3) 

εk12=εk21=− 
 3
2 [(ddσ)−(ddδ)](coskx−cosky), (4) 

 
where we have set the lattice constant unity. 
 

 
3. Formulation 
 
In this section, we derive equations for response 

functions, classify symmetry of superconductivity, and 
derive a gap equation for the anomalous self-energy for 
each symmetry. 

First, we derive equations for the Green’s function in 
the normal phase. For a system with orbital degree of 
freedom, the Green’s function is defined by  
 

Gτ1σ1;τ2σ2
(k,τ)=−〈Tτckτ1σ1

(τ)c
†
kτ2σ2

〉,  (5) 

and the anomalous Green’s functions are defined by  
 
Fτ1σ1;τ2σ2

(k,τ;qtot)=−〈Tτckτ1σ1
(τ)c−k+qtotτ2σ2

〉, (6) 

 
where Tτ denotes the time-ordered product, 〈L〉 denotes 

the thermal average, and qtot is the total momentum of the 

pair. Here we have used the Heisenberg representation for 
an operator O defined by  
 

,)( )()( tottot mNHtmNHt OeetO −−−=               (7) 

where Ntot= ∑
i,τ

 niτ  is the total number operator of 

electrons and μ is the chemical potential. As usual, we use 
the Fourier transformation with respect to imaginary time 
which is given by  

O(iεn)= ⌡⌠
0

β
 dτeiεnτO(τ),                 (8) 

 
where β=1/T with a temperature T and εn=(2n+1)πT is the 

Matsubara frequency for fermions with an integer n. We 
have set the Boltzmann constant unity. 

The Dyson-Gorkov equations are given by  
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where Στσ;τ'σ'(k) is the self-energy and φτσ;τ'σ'(k;qtot) is 

the anomalous self-energy. We have used the abbreviation 
k=(k,iεn) . The non-interacting Green’s function 

G(0)(k,iεn)  in a matrix form is given by  

 

            G(0)(k,iεn)=[iεn−εk+μ]−1. (12) 

 
Here we consider the normal phase. In the normal phase, 
the Green’s function and self-energy do not depend on 
spin, that is, Gτσ;τ'σ'(k)=δσσ'Gττ'(k) and 

Στσ;τ'σ'(k)=δσσ'Σττ'(k). Then the Dyson-Gorkov equation 

is given by  
 

Gττ'(k)=G
(0)
ττ'

(k)+ ∑
τ1τ2

 G
(0)
ττ1

(k)Σ(k)τ1τ2
Gτ2τ

'(k).    (13) 

In the FLEX approximation, the self-energy is given by  
 

Σττ'(k)= 
T
N ∑

q,τ1,τ2

 Vττ1;τ'τ2
(q)Gτ1τ2

(k−q), (14) 

 
where N is the number of lattice sites, q=(q,iωm) , and 

ωm=2mπT is the Matsubara frequency for bosons with an 

integer m. The matrix V(q) is given by  
 

]2/)()([
2
3)( )0( SSSSS UUqUqUqV +−= χχ

]2/)([
2
1 cccc UUqU −+ χ                  (15) 

The matrix elements of Us and Uc, which describe 
interactions for the spin part and the charge part, 
respectively, are given by  

U
s
11;11=U

s
22;22=U

c
11;11=U

c
22;22=U,  (16) 

U
s
11;22=U

s
22;11=J,   (17) 

U
c
11;22=U

c
22;11=2U'−J,   (18) 
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U
s
12;12=U

s
21;21=U',  (19) 

U
c
12;12=U

c
21;21=−U'+2J,   (20) 

 U
s
12;21=U

s
21;12=U

c
12;21=U

c
21;12=J', (21) 

 
and zero for the other elements of these matrices. The 

susceptibilities χs(q) for the spin part and χc(q) for the 
charge part are given by  
 

,)](1)[()( 1)0()0( −−= qUqq ss χχχ (22) 
 

,)](1)[()( 1)0()0( −−= qcUqq cc χχ (23) 
 

in matrix forms, where the matrix elements of χ(0)(q) are 
given by  
 

χ
(0)
τ1τ2;τ3τ4

(q)=− 
T
N ∑

k
 Gτ1τ3

(k+q)Gτ4τ2
(k).   (24) 

We solve Eqs. (13)-(15) and (22)-(24) self-consistently. 
Then, we can calculate response functions by using 

obtained χs(q) and χc(q). The response function 

corresponding to an operator O
A
i  is given by  

 

χA(q,iωm)= ∑
i

  ⌡⌠
0

β
 dτe−iq⋅ri+iωmτ〈TτO

A
i (τ)O

A
o 〉, (25) 

where o denotes the origin. A one-electron operator O
A
i  in 

the second-quantized form is generally written as  
 

.''''
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†
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sttsits

sstt

A
i cOcO ∑=    (26) 

For a two-orbital model, the matrix elements O
A
τσ;τ'σ' are 

given by  
 

O
charge
τσ;τ'σ'=δττ'δσσ',  (27) 

Oσ
ν

τσ;τ'σ'=δττ'σ $
ν

σσ',  (28) 

Oτ
ν

τσ;τ'σ'=σ $
ν

ττ'
δσσ',  (29) 

Oτ
νσν

'

τσ;τ'σ'=σ 
$
ν

ττ'
σ $
ν'

σσ',  (30) 

 
for charge, spin, orbital, and spin-orbital coupled 

operators, respectively, where σ $ν is the Pauli matrix for ν 
(=x, y, or z) component. Due to the rotational symmetry in 

the spin space, the relations χσ
x
(q)=χσ

y
(q)=χσ

z
(q) and 

χτ
νσx

(q)=χτ
νσy

(q)=χτ
νσz

(q) hold. 
The response functions in the FLEX approximation 

are given by  
 

χcharge(q)=2 ∑
τ1,τ2,τ3,τ4

 δτ2τ1
δτ3τ4

χ
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(q), (31) 
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Now, we derive a gap equation for superconductivity. 

First, we categorize the anomalous self-energy by 
symmetry. The anomalous self-energy for a spin-singlet 
state is given by  
 

)],;();([
2
1);( -¯;¯-;
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glet
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(35) 
and the anomalous self-energy for a spin-triplet state is 
given by  
 

φ
triplet
ττ'

(k;qtot)= 
1
2[φτ↑;τ'↓(k;qtot)+φτ↓;τ'↑(k;qtot)]. (36) 

 

The spin-triplet states with φ
triplet
ττ'

(k;qtot), with 

φτ↑;τ'↑(k;qtot), and with φτ↓;τ'↓(k;qtot) are degenerate 

due to the rotational symmetry in the spin space. 
The linearized gap equation for the anomalous self-energy 
is written as  
 

);(),( ' totqkξ
ττφξλ Γ  

∑ −=
21

2121
,'

; );'()'(
ττ

ξ
ττ

ξ
ττττ

k
totqkFkkV

N
T

 

∑ −−=
4321

21
,,'

'; )'(
ττττ

ξ
ττττ

k
kkV

N
T

                     (37) 

),'(),'()'(
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ξ
ττττ φ  

 
with λ(Γ,ξ)=1, where Γ denotes a representation of 

tetragonal symmetry C4v which φ
ξ

ττ'
(k;qtot) obeys, and 

F
ξ

ττ'
(k;qtot) is defined by the same way as φ

ξ

ττ'
(k;qtot). 



Katsunori Kubo 

 
1686 

Thus, the superconducting transition temperature is given 
by the temperature where an eigenvalue λ(Γ,ξ) of Eq. (37) 

becomes unity. The effective pairing interactions Vξ(q) are 
given as  

]2/)([
2
3)(sin ssssglet UUqUqV += χ   (38) 

]2/)([
2
1 cccc UUqU −− χ  

]2/)([
2
1)( sssstriplet UUqUqV +−= χ   (39) 

                      ]2/)([
2
1 cccc UUqU −− χ   

 
 

4. Results   
 
In this section, we show results for a 64×64 lattice. In 

the calculation, we use 2048 Matsubara frequencies. We 
normalize (ddσ) and (ddδ) so as to make the band-width 8, 
e.g., (ddδ)=(ddσ)=1 for (ddδ)/(ddσ)=1. In this study, we 
fix the value of the intra-orbital Coulomb interaction U=6 

and vary J (=J'). Then the inter-orbital Coulomb 

interaction is given by U'=U−2J. 
The calculations have been done for (ddδ)/(ddσ)=1, 0, 

and −1. For (ddδ)/(ddσ)=1, the model is equivalent to the 
two-orbital Hubbard model with the same hopping integral 
for both orbitals, except for orbital symmetry. For the two-
orbital Hubbard model, it is usual to assume orbital 
symmetry is s orbital one. From the results of the two-
orbital Hubbard model [15], we immediately find that 
dx2−y2-wave spin-triplet and p-wave spin-singlet states 

with qtot=(0,0)  appear in the eg orbital model with 

(ddδ)/(ddσ)=1. For (ddδ)/(ddσ)=0, we cannot find any 
superconducting state within T≥0.005. Thus, we show 
results only for (ddδ)/(ddσ)=−1 in the followings. 

In Fig. 1, we show Fermi surfaces for (ddδ)=−(ddσ).  
 

 
Fig. 1.  Fermi surfaces for (ddδ)=−(ddσ). 

 
 

For the electron number n=〈Ntot〉/N=2 per site, the 

Fermi surfaces disappear. As is shown in Fig. 1, if an 
electron with the momentum −k is on a Fermi surface, the 
electron with −k+Q is on another Fermi surface, where 

Q=(π,π). Thus it is possible to form a superconducting pair 
with total momentum qtot=Q by electrons with k and 

−k+Q for (ddδ)=−(ddσ). Thus we consider 
superconducting states with qtot=Q in addition to the 

ordinary ones with qtot=(0,0) . 

In Fig. 2, we show static susceptibilities 

χA(q)=χA(q,iωm=0)  for J=0, 1, and 2 at T=0.005 and 

n=1.5.  
 
 

 
Fig. 2.  q dependence of the susceptibilities for J=0, 1, and 2 at 

T=0.005, (ddδ)=−(ddσ), n=1.5, and U=6. 
 
 

Among all the susceptibilities, the spin susceptibility 

χσ
z
(q) becomes large by increasing J, that is, magnetic 

fluctuations are enhanced by the Hund’s rule coupling. On 

the other hand, the orbital susceptibility χτ
ν

(q) and the 

spin-orbital susceptibility χτ
νσz

(q) are suppressed by the 
Hund’s rule coupling. The charge susceptibility 

χcharge(q) is enhanced a little by the Hund’s rule 
coupling, but its value is very small. Thus, among various 
fluctuations, the spin fluctuations for a large J are 
important in the present model at least within the FLEX 
approximation. 
Figure 3 shows the spin susceptibility at q=qmax where 

qmax is defined as the wave vector at which χσ
z
(q) takes 

the maximum value, and the eigenvalue λ for p-wave spin-
singlet and dx2−y2-wave spin-triplet with 

qtot=Q=(π,π) .  
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Fig. 3.  Eigenvalues λ for p-wave spin-singlet and 
dx2−y2-wave spin-triplet for qtot=Q=(π,π) , and 

the spin susceptibility χσ
z
(qmax) as functions of n for (a) 

J=0, (b) J=1, and (c) J=2 at T=0.005, (ddδ)=−(ddσ), 
and U=6.  

 
For other pairing states, λ does not become larger than 

unity at least for parameters we have used. For J=0, the 
spin susceptibility does not enhance so much even at n=2, 
and λ also remains small. For J=1, the spin susceptibility 
enhances around n=2, and λ(p,singlet) also becomes large. 
However, the spin susceptibility enhances more rapidly 
than λ(p,singlet), and the ground state is probably an 
antiferromagnetic state around n=2. For J=2, the spin 
susceptibility becomes very large around n=0.8 and n=2. 
Between these regions, λ(p,singlet) and λ(dx2−y2,triplet) 
become larger than unity, thus superconductivity for these 
symmetry takes place with transition temperatures higher 
than 0.005. These superconducting states appear for a 
large J and thus these states should be composed mainly of 
orbital-antisymmetric components for which the 
anomalous self-energy is given by 
[φξ12(k;qtot)−φ

ξ
21(k;qtot)]/2. These components satisfy the 

Pauli principle for even-parity spin-triplet and for odd-
parity spin-singlet within even-frequency states. 

 
 

5. Summary 
 
We have studied an eg orbital model on a square 

lattice. We pointed out that a pairing state with the total 
momentum qtot=Q=(π,π)  is possible for 
(ddδ)=−(ddσ) from the Fermi surface structure. First we 
have calculated susceptibilities for charge, spin, orbital, 
and spin-orbital components. Then, we have found that the 

spin fluctuations are the most important ones in the model. 
For (ddδ)=(ddσ), U=6, and J=2, we find p-wave spin-
singlet and dx2−y2-wave spin-triplet states with 
qtot=(0,0) . We also find that near the region where the 
spin susceptibility enhances, p-wave spin-singlet and 
dx2−y2-wave spin-triplet states appear for (ddδ)=−(ddσ), 
U=6, and J=2 with superconducting pairs which have the 
finite total momentum Q like the FFLO state. 
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