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Superconductivity in e orbital systems with multi-Fermi-
surface
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We study superconductivity in eg orbital systems on a square lattice by applying fluctuation exchange approximation. For
such a multiorbital system, even-parity spin-triplet and odd-parity spin-singlet states are allowed by constructing a pair with
antisymmetrical orbitals. Indeed, it has been found that such states appear in a two-orbital Hubbard model in which Fermi
surfaces for both orbitals are the same. In the g4 orbital model, the number of Fermi surfaces and their structures depend on
the ratio of the Slater-Koster integrals, and exotic superconducting states peculiar to a multi-Fermi-surface system may
occur. We find several superconducting states depending on the structure of the Fermi surfaces and the number of
electrons per site. In particular, we find even-parity spin-triplet and odd-parity spin-singlet states with a finite total
momentum like the Fulde-Ferrell-Larkin-Ovchinnikov state even without a magnetic field. Such an exotic pair can be

stabilized with a finite total momentum, which connects the centers of Fermi surfaces with similar structures.
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1. Introduction

The role of orbital degree of freedom on magnetism
has been studied. For example, importance of the orbital
degree of freedom has been recognized for manganites [1,
2] and for f-electron systems [2, 3]. Then, it is revealed
that magnetism in multi-orbital systems has a rich variety.
Recently, the roles of orbital degree of freedom on
superconductivity have also been studied theoretically for
several materials [4, 5, 6, 7, 8, 9, 10, 11], and it has been
found that orbital degree of freedom is important for
determination of pairing symmetry.

To understand the effects of orbital degree of freedom
on superconductivity for simple cases, two-orbital
Hubbard models with the same dispersion for both orbitals
have been studied by a mean-field theory [12], by a
dynamical mean-field theory [13, 14], and by a fluctuation
exchange (FLEX) approximation [15]. These studies have
revealed that s-wave spin-triplet state and p-wave spin-
singlet state, which satisfy the Pauli principle by
composing an orbital state of a pair antisymmetrically, can
be stabilized in the two-orbital Hubbard model.

The two-orbital Hubbard model describes a system
where Fermi surfaces for both orbitals are the same. To
discuss more realistic situations, we should improve the
two-orbital Hubbard model. In particular, we should
include effects of orbital symmetry, such as orbital
dependent hopping integrals which describes a multi-
Fermi-surface system and transformation property of
orbitals. These properties are important for magnetism in
d-electron systems [1, 2] and in f-electron systems [2, 16,
17], and should be important also for superconductivity.

In this paper, we consider an eg orbital model on a

square lattice in order to include such effects, and
investigate possible superconducting states by applying
FLEX approximation, which has been extended to multi-
orbital models [6, 7, 9, 10, 11, 15]. We find several
superconducting states depending on model parameters. In
particular, we find that pairing states with a finite total
momentum like the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [18, 19] are possible in a system with multi-
Fermi-surface.

2. Model

To investigate superconductivity in a multi-orbital

system, we consider a tight-binding model for eg orbitals

given by
H= ngrr'ckm' +U Z nirTnirl«
i,z
+ ot
+U 'Z n,n, +J Z Ci16Ci26Ci1oCing
i

+ J ZCiTTCiTCiT'i«CiT'J«CiT'T (l)

i,r#7

where C.
ito

site i with orbital © (=1 or 2) and spin o (=T or 1), ke is

is the annihilation operator of the electron at

the Fourier N, = clc and

transform of it, its Cits »
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nir:znirc' The coupling constants U, U, J, and J
c

denote the intra-orbital Coulomb, inter-orbital Coulomb,

exchange, and pair-hopping interactions, respectively. In

the followings, we use the relations U=U +J+J and J=J
[20].

We consider hopping integrals for nearest neighbor sites
on a square lattice, and the coefficients of the kinetic
energy terms in Eq. (1) are generally given by

1
g1~ 213(ddo)+(ddd)](cosk, teosk ), @

1
800 E[(ddc)+3(dd6)](coskx+cosky), 3)
3
S0 S0 Azﬂ[(ddc)—(ddéi)](coskx—cosky), “

where we have set the lattice constant unity.

3. Formulation

In this section, we derive equations for response
functions, classify symmetry of superconductivity, and
derive a gap equation for the anomalous self-energy for
each symmetry.

First, we derive equations for the Green’s function in
the normal phase. For a system with orbital degree of
freedom, the Green’s function is defined by

T
Grlcl ;Tzcz(k’r)z_arckr 1 GI(T)CkQGz)’ ®)

and the anomalous Green’s functions are defined by
FTlGl;TZGZ(k’T;tht):_<T‘ECk‘CIGI(T)C—k+tht‘C202>’ ©)

where TT denotes the time-ordered product, (:--) denotes
the thermal average, and Aot is the total momentum of the

pair. Here we have used the Heisenberg representation for
an operator O defined by

O(t) — et(H_mNtot)Oe_t(H_mle) , )

where Ntot: Znir is the total number operator of
i,

electrons and p is the chemical potential. As usual, we use

the Fourier transformation with respect to imaginary time

which is given by

B
Oie, )= [ dre'*n"O(x), ®)
0

where f=1/T with a temperature T and an:(2n+l)rcT is the

Matsubara frequency for fermions with an integer n. We
have set the Boltzmann constant unity.

The Dyson-Gorkov equations are given by

Gro';r'o' (k) = 50'0"6;?') (k) + Z[Gig) (k)zrlo';r,r2 (k)GTZUZ;T'O" (k)
. ©)
+ G;g) (k)z ¢rla;r20'2 (kﬁ qtot ) Frtzcrz;r'o" (k7 qtot )] >
Gtot
F}/o';;/'o"(k; qtot) (10)

= Z[GESI) (k)z"rlo';rzo'2 (k) Frzo'z;r'o' (ka qtot)

71,72,02

- Gg)l) (k)¢r]a';rza'2 (k;qtot )Gr'a";120'2 (_k + qtot, - I En )]
(an

where ZTG;T'G'(k) is the self-energy and d)rc;r'c'(k;qtot) is
the anomalous self-energy. We have used the abbreviation
k:(k,ian) The non-interacting Green’s function

G(O)(k,isn) in a matrix form is given by

6O ke )is e 1™ (12)

Here we consider the normal phase. In the normal phase,
the Green’s function and self-energy do not depend on
spin, that is, G__ ' (k=5_G_(k) and

T0,TC GG T

ZTG;T'G'(k)ZSGG'ZTT'(k). Then the Dyson-Gorkov equation

is given by

(0) (©)
G/ 0-G 0+ ¥ Gr (0200, Gy (0. (13)
172
In the FLEX approximation, the self-energy is given by

T
Etr'(k): N Zytr 1 ;r'rz(q)Gt 1T

2(k—Q), (14
q,T1,T2

where N is the number of lattice sites, q:(q,icom) , and
mm:2mnT is the Matsubara frequency for bosons with an

integer m. The matrix V(q) is given by

V(q)=%[u Sr3@)-UsyQ@Us/2+U°%]
FUZ@UT2-U a9

The matrix elements of us and UC, which describe
interactions for the spin part and the charge part,
respectively, are given by

S S C C

Ui1:117Y22007Y1 1117 Y0007V (16)
S S

Ui1007Y20.117 an
C Cc '

Ui1.007Ys0. 172U (18)
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S S !

Ui2.127Y21.017Y: (19)
C C '

Uj2.107Yp1 017 U2, (20)
S S C C '
Ui2217 Y1107 Y1201 Y2107, @D

and zero for the other elements of these matrices. The

susceptibilities xs(q) for the spin part and Xc(q) for the
charge part are given by

2@ =2(I-U° (@], 2
2@ =2 (@-Uc (@], @3

in matrix forms, where the matrix elements of X(O)(q) are
given by
0)
XTIT2;T3T4
We solve Egs. (13)-(15) and (22)-(24) self-consistently.
Then, we can calculate response functions by using

.
(q)z—N%tht3<k+q>et4tz<k>. (24)

obtained xs(q) and xc(q). The response function

. A
corresponding to an operator Oi is given by

A . B —ig-ritio,T A A
K @iog)=X [ dwe THOMET 0/ @0p), (25
o
.y A.
where o denotes the origin. A one-electron operator Oi in
the second-quantized form is generally written as
O%= > ci O c... 6

L s Tsit’s it's
tt,s,s

For a two-orbital model, the matrix elements O v v are
16510
given by
charge
(0] =8 '8, 27
10;TC TT OO
v \
0% |, =56 (28)
10;TC T oo
v Y
o , =6 &__, (29)
to;tc T oo
vy vy
o' %, =6 3" . (30)
to;16 v o0
for charge, spin, orbital, and spin-orbital coupled

operators, respectively, where 6" is the Pauli matrix for v
(=X, Y, or z) component. Due to the rotational symmetry in

X y z
the spin space, the relations % (9)=x° (q)=x° (q) and

v_X v_y O
C @=x" 7 @=x" (@) hold.

The response functions in the FLEX approximation
are given by

charge, . ¢
X (q)_2 Z 5121151314)(111;2;1314((3!), (31)
Ty 3Ty
GZ .
X (q)_2 Z 6.52.518.53.54%1112;'[3‘[4((])7 (32)
Ty T3y
v z 7z c
x (@=2 Z 5121161;31;4)(111;2;1;314((1)’ (33)
Ty T30y
Vol z oz s
FO@2 L6 ot i@ (9
T Ty T3Ty

Now, we derive a gap equation for superconductivity.
First, we categorize the anomalous self-energy by
symmetry. The anomalous self-energy for a spin-singlet
state is given by

sin glef 1
ftt‘ d t(k;qtot) = 5[ ft-;t"(k;q‘f’t)_ ft*;t'-(k;qtOt )l

(35)
and the anomalous self-energy for a spin-triplet state is
given by

triplet

1
T’E' (k;qtot): z[(b‘CT;‘valr(k;qlot)—*_(b‘[»l/;T'T(k;qtot)]' (36)

triplet

The spin-triplet states with ¢ - (k;qtot), with
1T

¢'rT;t'T(k;qt0t)’ and with ¢r¢;r'i«(k;qt0t) are degenerate
due to the rotational symmetry in the spin space.

The linearized gap equation for the anomalous self-energy
is written as

AT, )85 (K Gyy)
T

= Vri T r(k_k')F‘r{fr (k';qtot)
N el 1572 172
__T dVe (k=K (37)
N K',717,,7374 v

X Gr]r3 (k')¢f314 (k'7qtot )Grzr4 (_k'+qtot ’_i En)

with MT,E)=1, where ' denotes a representation of

tetragonal symmetry C 4v which (1)& v(k;qtot) obeys, and
1T

g . g
an(k,qtot) is defined by the same way as 4’”'(k°qtot)’
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Thus, the superconducting transition temperature is given
by the temperature where an eigenvalue MT',§) of Eq. (37)

becomes unity. The effective pairing interactions Vé(q) are
given as

Vsinglet(q) _ %[U S;(S(CI)U sS4y /2] (38)
1 c_c c ¢
—E[U x(PU®-U"/2]
Vtriplet (q) _ _%[U SZS(q)U S+Us /2] (39)

1 ¢, c c c
-5V @u--U /2]

4. Results

In this section, we show results for a 64x64 lattice. In
the calculation, we use 2048 Matsubara frequencies. We
normalize (ddo) and (ddd) so as to make the band-width 8,
e.g., (ddd)=(ddo)=1 for (ddd)/(ddoc)=1. In this study, we
fix the value of the intra-orbital Coulomb interaction U=6

and vary J (=J'). Then the inter-orbital Coulomb

interaction is given by U=U-2J.

The calculations have been done for (ddd)/(ddo)=1, 0,
and —1. For (ddd)/(ddo)=1, the model is equivalent to the
two-orbital Hubbard model with the same hopping integral
for both orbitals, except for orbital symmetry. For the two-
orbital Hubbard model, it is usual to assume orbital
symmetry is S orbital one. From the results of the two-
orbital Hubbard model [15], we immediately find that
d,2 . 2-wave spin-triplet and p-wave spin-singlet states

XT=y
with qtot:(o’o) g orbital model with

(ddd)/(ddo)=1. For (ddd)/(ddc)=0, we cannot find any
superconducting state within T>0.005. Thus, we show
results only for (dd8)/(ddo)=—1 in the followings.

In Fig. 1, we show Fermi surfaces for (ddd)=—(ddo).

appear in the e

HE ] pe=|

n=1.5

T
[

Fig. 1. Fermi surfaces for (ddo)=—(ddo).

For the electron number n:<Nt0t>/N:2 per site, the

Fermi surfaces disappear. As is shown in Fig. 1, if an
electron with the momentum —kK is on a Fermi surface, the
electron with —k+Q is on another Fermi surface, where

Q=(m,m). Thus it is possible to form a superconducting pair
with total momentum qtot:Q by electrons with k and

—+k+Q for (ddd)=—(ddo). Thus we  consider
superconducting states with qtot=Q in addition to the
ordinary ones with qtot:(0,0)

In Fig.2, we show  static
M@= @i =0)  for 30, 1, and 2 at T=0.005 and

n=1.5.

susceptibilities

(TR XD (DL DR (R 0N ) (04

Fig. 2. g dependence of the susceptibilities for J=0, 1, and 2 at
T=0.005, (ddo)=—(dd o), n=1.5, and U=6.

Among all the susceptibilities, the spin susceptibility

z
XG (q) becomes large by increasing J, that is, magnetic
fluctuations are enhanced by the Hund’s rule coupling. On

v
the other hand, the orbital susceptibility % (q) and the

v _Z
spin-orbital susceptibility XT ° (q) are suppressed by the
Hund’s rule coupling. The charge susceptibility

M9 (q) is enhanced a little by the Hund’s rule

coupling, but its value is very small. Thus, among various
fluctuations, the spin fluctuations for a large J are
important in the present model at least within the FLEX
approximation.

Figure 3 shows the spin susceptibility at 0=0ax where

z
Umax is defined as the wave vector at which xc (q) takes

the maximum value, and the eigenvalue A for p-wave spin-
singlet and d,2  2-wave spin-triplet with

X7y
Oy Q=(.7)
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Fig. 3. Eigenvalues A for p-wave spin-singlet and
dxz_yz-wave spin-triplet for qt0t=Q=(7r,7r) , and

the spin susceptibility ;(Gz(qmax) as functions of n for (a)

J=0, (b) J=1, and (c) J=2 at T=0.005, (ddo)=—(ddo),
and U=6.

For other pairing states, A does not become larger than
unity at least for parameters we have used. For J=0, the
spin susceptibility does not enhance so much even at n=2,
and A also remains small. For J=1, the spin susceptibility
enhances around n=2, and A(p,Singlet) also becomes large.
However, the spin susceptibility enhances more rapidly
than A(p,singlet), and the ground state is probably an
antiferromagnetic state around n=2. For J=2, the spin
susceptibility becomes very large around n=0.8 and n=2.
Between these regions, A(p,singlet) and X(dx2_ 2,triplet)
become larger than unity, thus superconductivity for these
symmetry takes place with transition temperatures higher
than 0.005. These superconducting states appear for a
large J and thus these states should be composed mainly of
orbital-antisymmetric ~ components for which the
ané)malous £ self-energy is given by
[(I)1 (k;q,[ot)—d>2 (k;qtot)]/Z. These components satisfy the
Pauli principlé for even-parity spin-triplet and for odd-
parity spin-singlet within even-frequency states.

5. Summary

We have studied an e orbital model on a square
lattice. We pointed out that%a pairing state with the total
momentum t:Q:(n,n) is possible for
(ddd)=—(ddo) from the Fermi surface structure. First we
have calculated susceptibilities for charge, spin, orbital,
and spin-orbital components. Then, we have found that the

spin fluctuations are the most important ones in the model.
For (dd8)=(ddc), U=6, and J=2, we find p-wave spin-
singlet and dxz_ 2-wave spin-triplet states with
qt0t=(0,0) . We al¥0 find that near the region where the
spin susceptibility enhances, p-wave spin-singlet and
d,2 . 2-wave spin-triplet states appear for (ddd)=—(ddo),
lj(:6,yand J=2 with superconducting pairs which have the
finite total momentum Q like the FFLO state.
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